Binning with metadata generation, and storing into a NeXus file#

In this example, we show how to bin the same data used for example 3, but using the values for correction/calibration parameters generated in the example notebook 3, which are locally saved in the file sed_config.yaml. These data and the corresponding (machine and processing) metadata are then stored to a NeXus file following the NXmpes NeXus standard (https://fairmat-experimental.github.io/nexus-fairmat-proposal/9636feecb79bb32b828b1a9804269573256d7696/classes/contributed_definitions/NXmpes.html#nxmpes) using the ‘dataconverter’ of the pynxtools package (FAIRmat-NFDI/pynxtools).

[1]:
%load_ext autoreload
%autoreload 2

import sed
from sed.dataset import dataset

%matplotlib widget

Load Data#

[2]:
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
data_path = dataset.dir # This is the path to the data
scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
Set 'use_existing' to False if you want to download to a new location.
INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
INFO - WSe2 data is already present.
[3]:
metadata = {}
# manual Meta data. These should ideally come from an Electronic Lab Notebook.
#General
metadata['experiment_summary'] = 'WSe2 XUV NIR pump probe data.'
metadata['entry_title'] = 'Valence Band Dynamics - 800 nm linear s-polarized pump, 0.6 mJ/cm2 absorbed fluence'
metadata['experiment_title'] = 'Valence band dynamics of 2H-WSe2'

#User
# Fill general parameters of NXuser
# TODO: discuss how to deal with multiple users?
metadata['user0'] = {}
metadata['user0']['name'] = 'Julian Maklar'
metadata['user0']['role'] = 'Principal Investigator'
metadata['user0']['affiliation'] = 'Fritz Haber Institute of the Max Planck Society'
metadata['user0']['address'] = 'Faradayweg 4-6, 14195 Berlin'
metadata['user0']['email'] = 'maklar@fhi-berlin.mpg.de'

#NXinstrument
metadata['instrument'] = {}
metadata['instrument']['energy_resolution'] = 140.
#analyzer
metadata['instrument']['analyzer']={}
metadata['instrument']['analyzer']['slow_axes'] = "delay" # the scanned axes
metadata['instrument']['analyzer']['spatial_resolution'] = 10.
metadata['instrument']['analyzer']['energy_resolution'] = 110.
metadata['instrument']['analyzer']['momentum_resolution'] = 0.08
metadata['instrument']['analyzer']['working_distance'] = 4.
metadata['instrument']['analyzer']['lens_mode'] = "6kV_kmodem4.0_30VTOF.sav"

#probe beam
metadata['instrument']['beam']={}
metadata['instrument']['beam']['probe']={}
metadata['instrument']['beam']['probe']['incident_energy'] = 21.7
metadata['instrument']['beam']['probe']['incident_energy_spread'] = 0.11
metadata['instrument']['beam']['probe']['pulse_duration'] = 20.
metadata['instrument']['beam']['probe']['frequency'] = 500.
metadata['instrument']['beam']['probe']['incident_polarization'] = [1, 1, 0, 0] # p pol Stokes vector
metadata['instrument']['beam']['probe']['extent'] = [80., 80.]
#pump beam
metadata['instrument']['beam']['pump']={}
metadata['instrument']['beam']['pump']['incident_energy'] = 1.55
metadata['instrument']['beam']['pump']['incident_energy_spread'] = 0.08
metadata['instrument']['beam']['pump']['pulse_duration'] = 35.
metadata['instrument']['beam']['pump']['frequency'] = 500.
metadata['instrument']['beam']['pump']['incident_polarization'] = [1, -1, 0, 0] # s pol Stokes vector
metadata['instrument']['beam']['pump']['incident_wavelength'] = 800.
metadata['instrument']['beam']['pump']['average_power'] = 300.
metadata['instrument']['beam']['pump']['pulse_energy'] = metadata['instrument']['beam']['pump']['average_power']/metadata['instrument']['beam']['pump']['frequency']#µJ
metadata['instrument']['beam']['pump']['extent'] = [230., 265.]
metadata['instrument']['beam']['pump']['fluence'] = 0.15

#sample
metadata['sample']={}
metadata['sample']['preparation_date'] = '2019-01-13T10:00:00+00:00'
metadata['sample']['preparation_description'] = 'Cleaved'
metadata['sample']['sample_history'] = 'Cleaved'
metadata['sample']['chemical_formula'] = 'WSe2'
metadata['sample']['description'] = 'Sample'
metadata['sample']['name'] = 'WSe2 Single Crystal'

metadata['file'] = {}
metadata['file']["trARPES:Carving:TEMP_RBV"] = 300.
metadata['file']["trARPES:XGS600:PressureAC:P_RD"] = 5.e-11
metadata['file']["KTOF:Lens:Extr:I"] = -0.12877
metadata['file']["KTOF:Lens:UDLD:V"] = 399.99905
metadata['file']["KTOF:Lens:Sample:V"] = 17.19976
metadata['file']["KTOF:Apertures:m1.RBV"] = 3.729931
metadata['file']["KTOF:Apertures:m2.RBV"] = -5.200078
metadata['file']["KTOF:Apertures:m3.RBV"] = -11.000425

# Sample motor positions
metadata['file']['trARPES:Carving:TRX.RBV'] = 7.1900000000000004
metadata['file']['trARPES:Carving:TRY.RBV'] = -6.1700200225439552
metadata['file']['trARPES:Carving:TRZ.RBV'] = 33.4501953125
metadata['file']['trARPES:Carving:THT.RBV'] = 423.30500940561586
metadata['file']['trARPES:Carving:PHI.RBV'] = 0.99931647456264949
metadata['file']['trARPES:Carving:OMG.RBV'] = 11.002500171914066
[4]:
# create sed processor using the config file, and collect the meta data from the files:
sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={}, metadata=metadata, collect_metadata=True)
INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
[5]:
# Apply jittering to X, Y, t, ADC columns.
sp.add_jitter()
INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
[6]:
# Calculate machine-coordinate data for pose adjustment
sp.bin_and_load_momentum_calibration(df_partitions=10, plane=33, width=10, apply=True)
[7]:
# Adjust pose alignment, using stored distortion correction
sp.pose_adjustment(xtrans=8, ytrans=7, angle=-4, apply=True, use_correction=True)
INFO - No landmarks defined, using momentum correction parameters generated on 03/06/2025, 09:26:41
INFO - Calculated thin spline correction based on the following landmarks:
pouter_ord: [[203.2  341.96]
 [299.16 345.32]
 [350.25 243.7 ]
 [304.38 149.88]
 [199.52 152.48]
 [154.28 242.27]]
pcent: (248.29, 248.62)
INFO - Applied translation with (xtrans=8.0, ytrans=7.0).
INFO - Applied rotation with angle=-4.0.
[8]:
# Apply stored momentum correction
sp.apply_momentum_correction()
INFO - Adding corrected X/Y columns to dataframe:
Calculating inverse deformation field, this might take a moment...
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym
npartitions=100
                 float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...
Dask Name: apply_dfield, 206 graph layers
[9]:
# Apply stored config momentum calibration
sp.apply_momentum_calibration()
INFO - Adding kx/ky columns to dataframe:
INFO - Using momentum calibration parameters generated on 03/06/2025, 09:26:48
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym       kx       ky
npartitions=100
                 float64  float64  float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...
Dask Name: assign, 216 graph layers
[10]:
# Apply stored config energy correction
sp.apply_energy_correction()
INFO - Applying energy correction to dataframe...
INFO - Using energy correction parameters generated on 03/06/2025, 09:26:48
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym       kx       ky       tm
npartitions=100
                 float64  float64  float64  float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...
Dask Name: assign, 230 graph layers
[11]:
# Apply stored config energy calibration
sp.append_energy_axis(bias_voltage=16.8)
INFO - Adding energy column to dataframe:
INFO - Using energy calibration parameters generated on 03/06/2025, 09:26:57
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym       kx       ky       tm   energy
npartitions=100
                 float64  float64  float64  float64  float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
Dask Name: assign, 243 graph layers
[12]:
# Apply delay calibration
delay_range = (-500, 1500)
sp.calibrate_delay_axis(delay_range=delay_range, preview=True)
INFO - Adding delay column to dataframe:
INFO - Append delay axis using delay_range = [-500, 1500] and adc_range = [475.0, 6400.0]
INFO -              X            Y             t          ADC           Xm  \
0     0.384484     0.384484      0.384484     0.384484   -23.283623
1   365.244567  1002.244567  70101.244567  6317.244567   353.769545
2   761.101929   818.101929  75615.101929  6316.101929   792.106877
3   692.429705   971.429705  66455.429705  6317.429705   714.760810
4   671.413437   712.413437  73026.413437  6317.413437   697.342750
5   298.969298  1163.969298  68458.969298  6315.969298   280.645123
6   570.922107   664.922107  73902.922107  6315.922107   588.394845
7   822.485227   545.485227  72632.485227  6318.485227   847.200367
8   817.521308   415.521308  72421.521308  6316.521308   835.486497
9  1005.828330   666.828330  72801.828330  6316.828330  1037.626783

            Ym        kx        ky            tm     energy        delay
0    97.299514 -2.122526 -1.799076    -47.803871  -8.260110  -660.207769
1  1034.845992 -1.111125  0.715783  70084.236496   7.511388  1472.065676
2   838.751262  0.064664  0.189782  75614.218953   0.223263  1471.679976
3   984.283338 -0.142808  0.580155  66449.730696  15.953383  1472.128171
4   741.940029 -0.189530 -0.069903  73026.032742   3.068676  1472.122679
5  1187.498385 -1.307273  1.125256  68432.455877  10.828590  1471.635206
6   702.645708 -0.481770 -0.175305  73900.005007   2.017041  1471.619277
7   587.353173  0.212446 -0.484564  72628.340437   3.582615  1472.484465
8   466.640482  0.181025 -0.808362  72411.849440   3.872415  1471.821539
9   707.805877  0.723243 -0.161464  72794.352656   3.365232  1471.925175

Compute final data volume#

[13]:
axes = ['kx', 'ky', 'energy', 'delay']
bins = [100, 100, 200, 50]
ranges = [[-2, 2], [-2, 2], [-4, 2], [-600, 1600]]
res = sp.compute(bins=bins, axes=axes, ranges=ranges)
[14]:
# save to NXmpes NeXus (including standardized metadata)
sp.save(data_path + "/binned.nxs")
Using mpes reader to convert the given files:
• ../src/sed/config/NXmpes_config.json
The output file generated: /home/runner/work/sed/sed/docs/tutorial/datasets/WSe2/binned.nxs.
[15]:
# Visualization (requires JupyterLab)
from jupyterlab_h5web import H5Web
H5Web(data_path + "/binned.nxs")
[15]:
<jupyterlab_h5web.widget.H5Web object>
[ ]: