Binning with metadata generation, and storing into a NeXus file#

In this example, we show how to bin the same data used for example 3, but using the values for correction/calibration parameters generated in the example notebook 3, which are locally saved in the file sed_config.yaml. These data and the corresponding (machine and processing) metadata are then stored to a NeXus file following the NXmpes NeXus standard (https://fairmat-experimental.github.io/nexus-fairmat-proposal/9636feecb79bb32b828b1a9804269573256d7696/classes/contributed_definitions/NXmpes.html#nxmpes) using the ‘dataconverter’ of the pynxtools package (FAIRmat-NFDI/pynxtools).

[1]:
%load_ext autoreload
%autoreload 2

import sed
from sed.dataset import dataset

%matplotlib widget

Load Data#

[2]:
dataset.get("WSe2") # Put in Path to a storage of at least 20 GByte free space.
data_path = dataset.dir # This is the path to the data
scandir, _ = dataset.subdirs # scandir contains the data, _ contains the calibration files
INFO - Not downloading WSe2 data as it already exists at "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2".
Set 'use_existing' to False if you want to download to a new location.
INFO - Using existing data path for "WSe2": "/home/runner/work/sed/sed/docs/tutorial/datasets/WSe2"
INFO - WSe2 data is already present.
[3]:
metadata = {}
# manual Meta data. These should ideally come from an Electronic Lab Notebook.
#General
metadata['experiment_summary'] = 'WSe2 XUV NIR pump probe data.'
metadata['entry_title'] = 'Valence Band Dynamics - 800 nm linear s-polarized pump, 0.6 mJ/cm2 absorbed fluence'
metadata['experiment_title'] = 'Valence band dynamics of 2H-WSe2'

#User
# Fill general parameters of NXuser
# TODO: discuss how to deal with multiple users?
metadata['user0'] = {}
metadata['user0']['name'] = 'Julian Maklar'
metadata['user0']['role'] = 'Principal Investigator'
metadata['user0']['affiliation'] = 'Fritz Haber Institute of the Max Planck Society'
metadata['user0']['address'] = 'Faradayweg 4-6, 14195 Berlin'
metadata['user0']['email'] = 'maklar@fhi-berlin.mpg.de'

#NXinstrument
metadata['instrument'] = {}
metadata['instrument']['energy_resolution'] = 140.
#analyzer
metadata['instrument']['analyzer']={}
metadata['instrument']['analyzer']['slow_axes'] = "delay" # the scanned axes
metadata['instrument']['analyzer']['spatial_resolution'] = 10.
metadata['instrument']['analyzer']['energy_resolution'] = 110.
metadata['instrument']['analyzer']['momentum_resolution'] = 0.08
metadata['instrument']['analyzer']['working_distance'] = 4.
metadata['instrument']['analyzer']['lens_mode'] = "6kV_kmodem4.0_30VTOF.sav"

#probe beam
metadata['instrument']['beam']={}
metadata['instrument']['beam']['probe']={}
metadata['instrument']['beam']['probe']['incident_energy'] = 21.7
metadata['instrument']['beam']['probe']['incident_energy_spread'] = 0.11
metadata['instrument']['beam']['probe']['pulse_duration'] = 20.
metadata['instrument']['beam']['probe']['frequency'] = 500.
metadata['instrument']['beam']['probe']['incident_polarization'] = [1, 1, 0, 0] # p pol Stokes vector
metadata['instrument']['beam']['probe']['extent'] = [80., 80.]
#pump beam
metadata['instrument']['beam']['pump']={}
metadata['instrument']['beam']['pump']['incident_energy'] = 1.55
metadata['instrument']['beam']['pump']['incident_energy_spread'] = 0.08
metadata['instrument']['beam']['pump']['pulse_duration'] = 35.
metadata['instrument']['beam']['pump']['frequency'] = 500.
metadata['instrument']['beam']['pump']['incident_polarization'] = [1, -1, 0, 0] # s pol Stokes vector
metadata['instrument']['beam']['pump']['incident_wavelength'] = 800.
metadata['instrument']['beam']['pump']['average_power'] = 300.
metadata['instrument']['beam']['pump']['pulse_energy'] = metadata['instrument']['beam']['pump']['average_power']/metadata['instrument']['beam']['pump']['frequency']#µJ
metadata['instrument']['beam']['pump']['extent'] = [230., 265.]
metadata['instrument']['beam']['pump']['fluence'] = 0.15

#sample
metadata['sample']={}
metadata['sample']['preparation_date'] = '2019-01-13T10:00:00+00:00'
metadata['sample']['preparation_description'] = 'Cleaved'
metadata['sample']['sample_history'] = 'Cleaved'
metadata['sample']['chemical_formula'] = 'WSe2'
metadata['sample']['description'] = 'Sample'
metadata['sample']['name'] = 'WSe2 Single Crystal'

metadata['file'] = {}
metadata['file']["trARPES:Carving:TEMP_RBV"] = 300.
metadata['file']["trARPES:XGS600:PressureAC:P_RD"] = 5.e-11
metadata['file']["KTOF:Lens:Extr:I"] = -0.12877
metadata['file']["KTOF:Lens:UDLD:V"] = 399.99905
metadata['file']["KTOF:Lens:Sample:V"] = 17.19976
metadata['file']["KTOF:Apertures:m1.RBV"] = 3.729931
metadata['file']["KTOF:Apertures:m2.RBV"] = -5.200078
metadata['file']["KTOF:Apertures:m3.RBV"] = -11.000425

# Sample motor positions
metadata['file']['trARPES:Carving:TRX.RBV'] = 7.1900000000000004
metadata['file']['trARPES:Carving:TRY.RBV'] = -6.1700200225439552
metadata['file']['trARPES:Carving:TRZ.RBV'] = 33.4501953125
metadata['file']['trARPES:Carving:THT.RBV'] = 423.30500940561586
metadata['file']['trARPES:Carving:PHI.RBV'] = 0.99931647456264949
metadata['file']['trARPES:Carving:OMG.RBV'] = 11.002500171914066
[4]:
# create sed processor using the config file, and collect the meta data from the files:
sp = sed.SedProcessor(folder=scandir, config="../src/sed/config/mpes_example_config.yaml", system_config={}, metadata=metadata, collect_metadata=True)
INFO - Configuration loaded from: [/home/runner/work/sed/sed/docs/src/sed/config/mpes_example_config.yaml]
INFO - Folder config loaded from: [/home/runner/work/sed/sed/docs/tutorial/sed_config.yaml]
INFO - Default config loaded from: [/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/sed/config/default.yaml]
WARNING - Entry "KTOF:Lens:Sample:V" for channel "sampleBias" not found. Skipping the channel.
[5]:
# Apply jittering to X, Y, t, ADC columns.
sp.add_jitter()
INFO - add_jitter: Added jitter to columns ['X', 'Y', 't', 'ADC'].
[6]:
# Calculate machine-coordinate data for pose adjustment
sp.bin_and_load_momentum_calibration(df_partitions=10, plane=33, width=10, apply=True)
[7]:
# Adjust pose alignment, using stored distortion correction
sp.pose_adjustment(xtrans=8, ytrans=7, angle=-4, apply=True, use_correction=True)
INFO - No landmarks defined, using momentum correction parameters generated on 02/05/2025, 22:11:13
INFO - Calculated thin spline correction based on the following landmarks:
pouter_ord: [[203.2  341.96]
 [299.16 345.32]
 [350.25 243.7 ]
 [304.38 149.88]
 [199.52 152.48]
 [154.28 242.27]]
pcent: (248.29, 248.62)
INFO - Applied translation with (xtrans=8.0, ytrans=7.0).
INFO - Applied rotation with angle=-4.0.
[8]:
# Apply stored momentum correction
sp.apply_momentum_correction()
INFO - Adding corrected X/Y columns to dataframe:
Calculating inverse deformation field, this might take a moment...
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym
npartitions=100
                 float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...
Dask Name: apply_dfield, 206 graph layers
[9]:
# Apply stored config momentum calibration
sp.apply_momentum_calibration()
INFO - Adding kx/ky columns to dataframe:
INFO - Using momentum calibration parameters generated on 02/05/2025, 22:11:20
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym       kx       ky
npartitions=100
                 float64  float64  float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...
Dask Name: assign, 216 graph layers
[10]:
# Apply stored config energy correction
sp.apply_energy_correction()
INFO - Applying energy correction to dataframe...
INFO - Using energy correction parameters generated on 02/05/2025, 22:11:20
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym       kx       ky       tm
npartitions=100
                 float64  float64  float64  float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...
Dask Name: assign, 230 graph layers
[11]:
# Apply stored config energy calibration
sp.append_energy_axis(bias_voltage=16.8)
INFO - Adding energy column to dataframe:
INFO - Using energy calibration parameters generated on 02/05/2025, 22:11:30
INFO - Dask DataFrame Structure:
                       X        Y        t      ADC       Xm       Ym       kx       ky       tm   energy
npartitions=100
                 float64  float64  float64  float64  float64  float64  float64  float64  float64  float64
                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
...                  ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
                     ...      ...      ...      ...      ...      ...      ...      ...      ...      ...
Dask Name: assign, 243 graph layers
[12]:
# Apply delay calibration
delay_range = (-500, 1500)
sp.calibrate_delay_axis(delay_range=delay_range, preview=True)
INFO - Adding delay column to dataframe:
INFO - Append delay axis using delay_range = [-500, 1500] and adc_range = [475.0, 6400.0]
INFO -              X            Y             t          ADC           Xm  \
0    -0.126020    -0.126020     -0.126020    -0.126020     0.000000
1   364.596140  1001.596140  70100.596140  6316.596140   353.069029
2   760.684074   817.684074  75614.684074  6315.684074   791.673797
3   692.440922   971.440922  66455.440922  6317.440922   714.772671
4   671.004409   712.004409  73026.004409  6317.004409   696.901851
5   298.701754  1163.701754  68458.701754  6315.701754   280.357604
6   570.585171   664.585171  73902.585171  6315.585171   588.029930
7   822.267425   545.267425  72632.267425  6318.267425   846.971660
8   818.305078   416.305078  72422.305078  6317.305078   836.291362
9  1005.792901   666.792901  72801.792901  6316.792901  1037.589215

            Ym        kx        ky            tm     energy        delay
0     0.000000 -2.060071 -2.060071    -48.344229  -8.260235  -660.380091
1  1034.287893 -1.113004  0.714286  70083.580102   7.512569  1471.846798
2   838.363598  0.063502  0.188742  75613.811038   0.223653  1471.538928
3   984.293314 -0.142776  0.580182  66449.741505  15.953351  1472.131957
4   741.573357 -0.190713 -0.070886  73025.617369   3.069200  1471.984611
5  1187.266145 -1.308044  1.124633  68432.188403  10.829189  1471.544896
6   702.348038 -0.482749 -0.176104  73899.653639   2.017444  1471.505543
7   587.145055  0.211832 -0.485122  72628.118913   3.582907  1472.410945
8   467.394464  0.183184 -0.806339  72412.661803   3.871314  1472.086102
9   707.771248  0.723142 -0.161557  72794.318512   3.365276  1471.913216

Compute final data volume#

[13]:
axes = ['kx', 'ky', 'energy', 'delay']
bins = [100, 100, 200, 50]
ranges = [[-2, 2], [-2, 2], [-4, 2], [-600, 1600]]
res = sp.compute(bins=bins, axes=axes, ranges=ranges)
[14]:
# save to NXmpes NeXus (including standardized metadata)
sp.save(data_path + "/binned.nxs")
Using mpes reader to convert the given files:
• ../src/sed/config/NXmpes_config.json
The output file generated: /home/runner/work/sed/sed/docs/tutorial/datasets/WSe2/binned.nxs.
[15]:
# Visualization (requires JupyterLab)
from jupyterlab_h5web import H5Web
H5Web(data_path + "/binned.nxs")
[15]:
<jupyterlab_h5web.widget.H5Web object>
[ ]: