Binning demonstration on locally generated fake data#
In this example, we generate a table with random data simulating a single event dataset. We showcase the binning method, first on a simple single table using the bin_partition method and then in the distributed method bin_dataframe, using daks dataframes. The first method is never really called directly, as it is simply the function called by the bin_dataframe on each partition of the dask dataframe.
[1]:
import dask
import numpy as np
import pandas as pd
import dask.dataframe
import matplotlib.pyplot as plt
from sed.binning import bin_partition, bin_dataframe
%matplotlib widget
Generate Fake Data#
[2]:
n_pts = 100000
cols = ["posx", "posy", "energy"]
df = pd.DataFrame(np.random.randn(n_pts, len(cols)), columns=cols)
df
[2]:
posx | posy | energy | |
---|---|---|---|
0 | 0.205218 | -0.571904 | -1.070978 |
1 | 1.771339 | -1.511272 | -0.992719 |
2 | 0.783956 | 0.678140 | -1.532018 |
3 | -0.057134 | 0.034341 | -1.224325 |
4 | 1.076700 | -0.889195 | -1.032738 |
... | ... | ... | ... |
99995 | 0.026039 | -1.091605 | 0.689857 |
99996 | -0.317016 | -0.378478 | -1.621664 |
99997 | -0.854257 | -1.202621 | -0.034407 |
99998 | -0.259313 | -0.239700 | 0.726659 |
99999 | 0.431386 | 0.536285 | 1.129429 |
100000 rows × 3 columns
Define the binning range#
[3]:
binAxes = ["posx", "posy", "energy"]
nBins = [120, 120, 120]
binRanges = [(-2, 2), (-2, 2), (-2, 2)]
coords = {ax: np.linspace(r[0], r[1], n) for ax, r, n in zip(binAxes, binRanges, nBins)}
Compute the binning along the pandas dataframe#
[4]:
%%time
res = bin_partition(
part=df,
bins=nBins,
axes=binAxes,
ranges=binRanges,
hist_mode="numba",
)
CPU times: user 1.21 s, sys: 39.8 ms, total: 1.25 s
Wall time: 1.25 s
[5]:
fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), constrained_layout=True)
for i in range(3):
axs[i].imshow(res.sum(i))
Transform to dask dataframe#
[6]:
ddf = dask.dataframe.from_pandas(df, npartitions=50)
ddf
[6]:
Dask DataFrame Structure:
posx | posy | energy | |
---|---|---|---|
npartitions=50 | |||
0 | float64 | float64 | float64 |
2000 | ... | ... | ... |
... | ... | ... | ... |
98000 | ... | ... | ... |
99999 | ... | ... | ... |
Dask Name: from_pandas, 1 graph layer
Compute distributed binning on the partitioned dask dataframe#
In this example, the small dataset does not give significant improvement over the pandas implementation, at least using this number of partitions. A single partition would be faster (you can try…) but we use multiple for demonstration purposes.
[7]:
%%time
res = bin_dataframe(
df=ddf,
bins=nBins,
axes=binAxes,
ranges=binRanges,
hist_mode="numba",
)
CPU times: user 398 ms, sys: 542 ms, total: 940 ms
Wall time: 500 ms
[8]:
fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), constrained_layout=True)
for dim, ax in zip(binAxes, axs):
res.sum(dim).plot(ax=ax)
[ ]: