Binning demonstration on locally generated fake data#
In this example, we generate a table with random data simulating a single event dataset. We showcase the binning method, first on a simple single table using the bin_partition method and then in the distributed method bin_dataframe, using daks dataframes. The first method is never really called directly, as it is simply the function called by the bin_dataframe on each partition of the dask dataframe.
[1]:
import dask
import numpy as np
import pandas as pd
import dask.dataframe
import matplotlib.pyplot as plt
from sed.binning import bin_partition, bin_dataframe
%matplotlib widget
Generate Fake Data#
[2]:
n_pts = 100000
cols = ["posx", "posy", "energy"]
df = pd.DataFrame(np.random.randn(n_pts, len(cols)), columns=cols)
df
[2]:
posx | posy | energy | |
---|---|---|---|
0 | -0.904281 | 0.406904 | 0.865185 |
1 | -0.183710 | 0.798578 | -0.343261 |
2 | -0.542466 | -0.353483 | -1.031844 |
3 | -1.475244 | -1.553052 | -1.419444 |
4 | 1.455013 | -0.097515 | 1.273408 |
... | ... | ... | ... |
99995 | 0.743886 | -0.279756 | -0.123445 |
99996 | 0.100459 | -0.026252 | -0.519787 |
99997 | 1.176510 | 1.114776 | 0.054486 |
99998 | 0.445475 | 0.799230 | 1.114095 |
99999 | 1.654780 | -1.577784 | -1.172331 |
100000 rows × 3 columns
Define the binning range#
[3]:
binAxes = ["posx", "posy", "energy"]
nBins = [120, 120, 120]
binRanges = [(-2, 2), (-2, 2), (-2, 2)]
coords = {ax: np.linspace(r[0], r[1], n) for ax, r, n in zip(binAxes, binRanges, nBins)}
Compute the binning along the pandas dataframe#
[4]:
%%time
res = bin_partition(
part=df,
bins=nBins,
axes=binAxes,
ranges=binRanges,
hist_mode="numba",
)
CPU times: user 1.28 s, sys: 28.2 ms, total: 1.31 s
Wall time: 1.31 s
[5]:
fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), constrained_layout=True)
for i in range(3):
axs[i].imshow(res.sum(i))
Transform to dask dataframe#
[6]:
ddf = dask.dataframe.from_pandas(df, npartitions=50)
ddf
[6]:
Dask DataFrame Structure:
posx | posy | energy | |
---|---|---|---|
npartitions=50 | |||
0 | float64 | float64 | float64 |
2000 | ... | ... | ... |
... | ... | ... | ... |
98000 | ... | ... | ... |
99999 | ... | ... | ... |
Dask Name: from_pandas, 1 graph layer
Compute distributed binning on the partitioned dask dataframe#
In this example, the small dataset does not give significant improvement over the pandas implementation, at least using this number of partitions. A single partition would be faster (you can try…) but we use multiple for demonstration purposes.
[7]:
%%time
res = bin_dataframe(
df=ddf,
bins=nBins,
axes=binAxes,
ranges=binRanges,
hist_mode="numba",
)
CPU times: user 443 ms, sys: 505 ms, total: 948 ms
Wall time: 531 ms
[8]:
fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), constrained_layout=True)
for dim, ax in zip(binAxes, axs):
res.sum(dim).plot(ax=ax)
[ ]: